2,223 research outputs found

    Habitable Exoplanet Observatory (HabEx) Telescope: Systems Engineering and STOP Modeling

    Get PDF
    The Habitable Exoplanet Observatory Mission (HabEx) is one of four missions studied for the 2020 Astrophysics Decadal Survey. Its goal is to directly image and spectroscopically characterize planetary systems in the habitable zone around nearby sun-like stars. Additionally, HabEx will perform a broad range of general astrophysics science enabled by 115 to 1700 nm spectral range and 3 x 3 arc-minute FOV. Critical to achieving its science goals is a large, ultra-stable UV/Optical/Near-IR (UVOIR) telescope. The baseline HabEx telescope is a 4-meter off-axis unobscured three-mirror-anastigmatic, diffraction limited at 400 nm with wavefront stability on the order of a few 10s of picometers. This paper summarizes the opto-mechanical design of the baseline optical telescope assembly, including a discussion of how we applied science driven systems engineering to derive the telescopes engineering specifications from the missions science requirements, and presents analysis that the baseline telescope structure meets its specified tolerances

    HabEx Baseline Telescope: Design & Predicted Performance

    Get PDF
    Habitable Exoplanet Observatory Mission (HabEx) will image & spectroscopically characterize planetary systems in the habitable zone around nearby sun-like stars. Additionally, HabEx will perform a broad range of general astrophysics science enabled by a 150 to 1700 nm spectral range and 3 x 3 arc-minute FOV. Critical to achieving the HabEx science goals is a large, ultra-stable telescope. The baseline HabEx telescope is a 4-m off-axis unobscured three-mirror-anastigmatic design with diffraction limited performance at 400 nm and wavefront stability of picometers per mK. These specifications are driven by science requirements. STOP (structural thermal optical performance) analysis predicts that the baseline telescopes opto-mechanical design meets its specified performance tolerances

    Cost Modeling for Space Telescope

    Get PDF
    Parametric cost models are an important tool for planning missions, compare concepts and justify technology investments. This paper presents on-going efforts to develop single variable and multi-variable cost models for space telescope optical telescope assembly (OTA). These models are based on data collected from historical space telescope missions. Standard statistical methods are used to derive CERs for OTA cost versus aperture diameter and mass. The results are compared with previously published models

    Reflections on My Time in the Wolfe Den

    Get PDF
    The three and a half years I spent as a member of the Infrared Group were transitional. Bill Wolfe was the nexus. Bill played a role in getting me to Arizona and keeping me there. He helped me advance professionally and taught me how to think like a systems engineer. He played a central role in my effort to earn a PhD. And, he helped start me in SPIE. This paper contains my personal and honest reflections on the impact which Bill Wolfe has had on me

    The James Webb Space Telescope (JWST), The First Light Machine

    Get PDF
    Scheduled to begin its 10 year mission after 2018, the James Webb Space Telescope (JWST) will search for the first luminous objects of the Universe to help answer fundamental questions about how the Universe came to look like it does today. At 6.5 meters in diameter, JWST will be the world s largest space telescope. This talk reviews science objectives for JWST and how they drive the JWST architecture, e.g. aperture, wavelength range and operating temperature. Additionally, the talk provides an overview of the JWST primary mirror technology development and fabrication status

    NASA SBIR Subtopic S2.04 "Advanced Optical Components"

    Get PDF
    The primary purpose of this subtopic is to develop and demonstrate technologies to manufacture ultra-low-cost precision optical systems for very large x-ray, UV/optical or infrared telescopes. Potential solutions include but are not limited to direct precision machining, rapid optical fabrication, slumping or replication technologies to manufacture 1 to 2 meter (or larger) precision quality mirror or lens segments (either normal incidence for uv/optical/infrared or grazing incidence for x-ray). An additional key enabling technology for UV/optical telescopes is a broadband (from 100 nm to 2500 nm) high-reflectivity mirror coating with extremely uniform amplitude and polarization properties which can be deposited on 1 to 3 meter class mirror

    8 Meter Advanced Technology Large-Aperture Space Telescope (ATLAST-8m)

    Get PDF
    ATLAST-8m (Advanced Technology Large Aperture Space Telescope) is a proposed 8-meter monolithic UV/optical/NIR space observatory (wavelength range 110 to 2500 nm) to be placed in orbit at Sun-Earth L2 by NASA's planned Ares V heavy lift vehicle. Given its very high angular resolution (15 mas @ 500 nm), sensitivity and performance stability, ATLAST-8m is capable of achieving breakthroughs in a broad range of astrophysics including: Is there life elsewhere in the Galaxy? An 8-meter UVOIR observatory has the performance required to detect habitability (H2O, atmospheric column density) and biosignatures (O2, O3, CH4) in terrestrial exoplanet atmospheres, to reveal the underlying physics that drives star formation, and to trace the complex interactions between dark matter, galaxies, and intergalactic medium. The ATLAST Astrophysics Strategic Mission Concept Study developed a detailed point design for an 8-m monolithic observatory including optical design; structural design/analysis including primary mirror support structure, sun shade and secondary mirror support structure; thermal analysis; spacecraft including structure, propulsion, GN&C, avionics, power systems and reaction wheels; mass and power budgets; and system cost. The results of which were submitted by invitation to NRC's 2010 Astronomy & Astrophysics Decadal Survey

    Large Space Optics: From Hubble to JWST and Beyond

    Get PDF
    If necessity truly is the mother of invention, then advances in lightweight space mirror technology have been driven by launch vehicle mass and volume constraints. In the late 1970 s, at the start of Hubble development, the state of the art in ground based telescopes was 3 to 4 meter monolithic primary mirrors with masses of 6000 to 10,000 kg - clearly too massive for the planned space shuttle 25,000 kg capability to LEO. Necessity led Hubble to a different solution. Launch vehicle mass constraints (and cost) resulted in the development of a 2.4 meter lightweight eggcrate mirror. At 810 kg (180 kg/m2), this mirror was approximately 7.4% of HST s total 11,110 kg mass. And, the total observatory structure at 4.3 m x 13.2 m fit snuggly inside the space shuttle 4.6 m x 18.3 m payload bay. In the early 1990 s, at the start of JWST development, the state of the art in ground based telescopes was 8 meter class monolithic primary mirrors (16,000 to 23,000 kg) and 10 meter segmented mirrors (14,400 kg). Unfortunately, launch vehicles were still constrained to 4.5 meter payloads and 25,000 kg to LEO or 6,600 kg to L2. Furthermore, science now demanded a space telescope with 6 to 8 meter aperture operating at L2. Mirror technology was identified as a critical capability necessary to enable the next generation of large aperture space telescopes. Specific telescope architectures were explored via three independent design concept studies conducted during the summer of 1996 (1). These studies identified two significant architectural constraints: segmentation and areal density. Because the launch vehicle fairing payload dynamic envelop diameter is approximately 4.5 meters, the only way to launch an 8 meter class mirror is to segment it, fold it and deploy it on orbit - resulting in actuation and control requirements. And, because of launch vehicle mass limits, the primary mirror allocation was only 1000 kg - resulting in a maximum areal density of 20 kg/m2. At the inception of JWST in 1996, such a capability did not exist. A highly successful technology development program was initiated resulting in matured and demonstrated mirror technology for JWST (2, 3). Today, the JWST 6.5 meter primary mirror has an areal density of 25 kg/m2 for a total mass of 625 kg or 9.6% of the total JWST observatory mass of 6,500 kg. Looking into the future, science requires increasing larger collecting apertures. Ground based telescopes are already moving towards 30+ meter mirrors. The only way to meet this challenge for space telescopes is via even lower areal density mirrors or on-orbit assembly or larger launch vehicles (4). The planned NASA Ares V with its 10 meter fairing and 55,000 kg payload to L2 eliminates this constraint (5)

    Summary of the NASA Science Instrument, Observatories and Sensor Systems (SIOSS) Technology Assessment Roadmap

    Get PDF
    In August 2010, the NASA Office of Chief Technologist (OCT) commissioned an assessment of 15 different technology areas of importance to the future of NASA. Technology Assessment #8 (TA8) was Science Instruments, Observatories and Sensor Systems (SIOSS). SIOSS assessed the needs for optical technology ranging from detectors to lasers, x-ray mirrors to microwave antenna, in-situ spectrographs for on-surface planetary sample characterization to large space telescopes. This needs assessment looked across the entirety of NASA and not just the Science Mission Directorate. This paper summarizes the SIOSS findings and recommendations
    corecore